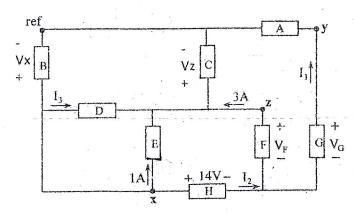
Universidad Distrital "Francisco José de Caldas"

Facultad Tecnológica - Tecnología en sistemas eléctricos de media y baja tensión Análisis de Circuitos I Parcial #1 23 de septiembre de 2016

Código

Ŷ	1.	2,	al de	arse c	onecta	ctrico d do dur proceso	ante tr	dor de es hora	batería as. La	de un c batería V(と)	elula del	r se desc celular	cribe se	e en la gr encontra	áfica aba	a 1 y gráfica totalmente
00[m'A']	<i>L</i> ((£)	1					5	[V]		2 2	2			ŧ	
-	*		1		\ :		1		*		- 4 - 2 - 4				1	+(h)


- a. ¿Cuál es la carga transferida a la batería del celular al cabo de las tres horas? (5 puntos)
- b. ¿Qué porcentaje de la carga se transfirió en la primera hora? (5 puntos)

Nombre

- c. ¿Qué capacidad de almacenamiento de Energía tiene la batería del celular? (6 puntos)
- d. ¿Para qué tiempo la batería del celular alcanza el 80% de la máxima energía que puede almacenar? (10 puntos)

Recomendaciones: Construya la gráfica de potencia en función del tiempo que describe el comportamiento de la batería del celular. Según usted lo considere exprese los resultados de carga eléctrica en [C] o en [A-h] y exprese los resultados de energía eléctrica en [J] o en [W-h].

- 2. En el circuito mostrado en la figura, el elemento G genera 54 W y los elementos B y C consumen 36 W y 48 W, respectivamente; si también se conoce que el voltaje $V_X = 18$ V y el voltaje $V_Z = 12$ V, determinar:
- a) (4 puntos) Los valores de tensión V_F y V_G, atendiendo la polaridad dada a cada elemento.
- b) (4 puntos) La tensión del nodo "y" con respecto al nodo de referencia, y el voltaje V_{xy}.
- c) (6 puntos) Los valores de corriente I₁, I₂ e I₃, teniendo en cuenta la dirección asignada.
- d) (10 puntos) Los elementos activos (si los hay) adicionales a G, y su respectiva potencia.

